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1. Introduction

Washboarding is a pattern that occurs in unpaved roads as a result of vehicles driving
above a critical speed. Such speed, dependent on the properties of the vehicles and the road
surface, causes the formation of a series of bumps with short spacing. This phenomenon is not
only aggravating for drivers but also poses as a hazard due to the fact that the adherence of
the road is reduced. [3] A classic challenge that engineers face includes building an optimal
vehicle that delivers a smooth car ride while maintaining cost efficiency. In this report,
we develop two mathematical models that capture the dynamics of a vehicle driving on a
washboard road and introduce filters to smooth or possibly eliminate the vehicle’s vertical
displacement due to the bumpy road. To gain insight on the behavior of the underlying
system, we first consider a simplified model, the harmonic oscillator, the results of which
we compare to a real world model. This real world model is an estimate of the underlying
dynamics incorporated with a set of given data. The data obtained from both models shows
that the smoothest ride is obtained by minimizing the displacement velocity of the vehicle.

Figure 1: Washboard pattern.
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2. Derivation of the model

A number of assumptions are taken into consideration when deriving each model. We con-
sider a one-wheeled car (i.e. a unicycle) in order to model the dynamics of driving over
bumpy road followed by:

1. The suspension of a single wheel will be modeled as a damped harmonic oscillator.

2. The periodicity of the washboard road condition can be modeled as a sinusoidal forcing
term. We consider this model with and without the presence of noise.

3. We assume the noise term is normally distributed with a known variance and zero
mean.

Figure 2

Under these assumptions, we appeal to Newton’s Second Law of Motion:
∑
f = ma,

where m > 0 is the object mass and a = y′′(t) is the acceleration. For a damped harmonic
oscillator this leads to the equation

my′′ = −by′ − κy + f(t),

where y(t) = y is the mass displacement, f(t) is a forcing term due to the road, and κ > 0
and b > 0 are constants describing the stiffness of the spring and damping, respectively.

For simplicity, we assign β = b/m ≥ 0, ω2
0 = κ/m > 0 and fm(t) = 1

m
f(t), leading to the

following equation:
y′′ + βy′ + ω2

0y = fm(t).

Under the assumption of the washboard pattern road, we can replace fm(t) by α sin(ωdt),
obtaining:

y′′ + βy′ + ω2
0y = α sin(ωdt), (2.1)

2



where ω0 and ωd are the natural frequency and forcing frequency, respectively.

3. Mathematical Models

3.1 Model A: Harmonic Oscillator

As an accurate model of the dynamics we use a finite difference approximation to solve our
system numerically. With a discrete uniform time mesh, tn, we let wn = y(tn), then using
centered finite differences, y′′(t) ≈ wn+1−2wn+wn−1

∆t2
, y′(t) ≈ wn+1−wn−1

2∆t
then (2.1) becomes

wn+1 − 2wn + wn−1

∆t2
+ β

(
wn+1 − wn−1

2∆t

)
+ ω2

0w
n = fn

−→ wn+1 =

(
2− ω2

0∆t2

1 + β∆t
2

)
wn +

(
−1 + β∆t

2

1 + β∆t
2

)
wn−1 +

(
∆t2

1 + β∆t
2

)
fn,

with fn = α sin(ωdtn).

3.2 Model B: A Real World Model

It is rare to expect mathematical models to be perfect when they are compared to nature
or complex engineered devices. In addition, it is rare to obtain measured data that is error
free. For this reason, we take into consideration a modification of model A, which does not
represent a damped harmonic oscillator. The dynamics for such a system is given by: wn+1

wn

 =

 (2− ω2
0∆t2)γ (1− β∆t

2
)γ

1 0

 wn

wn−1

+ α∆t2γ

 sin(ωdtn)

0


where γ = (1 + β∆t

2
)−1.

For analysis purposes, it’s sufficient to consider the convergence properties of the homo-
geneous case

wn+1 = (2− ω2∆t2)γwn +

(
1− β∆t

2

)
γwn−1, (3.1)

where we make the ansatz of the form of solution to be wn = λn.

3



Plugging this ansatz into Eq (3.1) gives

wn = aλn1 + bλn2

= a

(
c1 +

√
c2

1 + 4c2

2

)n

+ b

(
c1 −

√
c2

1 + 4c2

2

)n

where c1 = (2− ω2∆t2)γ and c2 = (1− β∆t)γ.
The following parameters and initial conditions are used to obtain numerical simulations

throughout the report, unless otherwise specified: α = 0.06, β = 0.1, ω = 0.7. Using these
values, we have the following solution to the homogeneous problem: wn = 0.0720[2.3552n − (−0.4225)n],
which grows exponentially with respect to time and does not exhibit oscillatory behavior, as
shown in Figure 3.
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Figure 3: Displacement of Model A.

Note that this solution does not describe a simple harmonic oscillator, thus we should not
expect it to behave as such.

4. Observation Data

To include the discomfort caused by the gravel road in addition to the washboard pattern,
we assume that we have a sensor that gathers correct driving conditions at discrete uniform
times. Additionally, we assume the observation data is subject to additive white noise with
zero mean and known variance. The sampling data is chosen to be synchronous to the time
step of the model. Our observation data at time tm is Zm, given below:

Zm = Hy(tm) + ηm
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where H is some linear functional of the true conditions y(tm), with additive white noise ηm
with known variance and zero mean. The observation data will provide useful feedback to
obtain the smoothest ride possible.

4.1 Kalman Filtering

To enhance the smoothness of the ride, we introduce a technique known as the Kalman Filter
which minimizes the variance between the measured data and the predicted data. We start
by recalling Bayes theorem

P(Y |Z) ∝ P(Z|Y )P(Y )

which tells us our posterior distribution, P(Y |Z), is proportional to the product of the
likelihood distribution and prior distribution, P(Z|Y ), and P(Y ).

By our assumption that the model and observation data includes white noise with known
variance and zero mean, we can derive that the posteriori distribution is given by

P(Y |Z) ∝ exp
[
−
∑

θ>nQ
−1θn −

∑
η>mR

−1ηm

]
.

We wish to minimize the variance of the posteriori distribution.
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Figure 4: Kalman Filtering: Error between Kalman filter path and observation data. R:
covariance of observation noise; Q: covariance of model noise.

Figure 4 shows the maximum difference between the model prediction and measured data
as the ratio R/Q varies. One notices that when the ratio R/Q is small the Kalman filter
will have higher confidence on the measured data. Conversely, as R/Q increases the esti-
mated path will rely less on the measured data, and will adjust its behavior to be the best
compromise between data and the model prediction.
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Figure 5: More confidence on the data. Figure 6: More confidence in the model.

5. Ride Comfort

To improve the quality of the ride for our passenger we introduce the concepts of passive
and active filtering which serve to eliminate or reduce a combination of the displacement,
velocity and the acceleration of the system. In passive filtering we implement this through
physical modifications to the original parameters. In active filtering we provide a feedback
loop using the Kalman filter.

5.1 The Passive Filter

In the preliminary attempt to smooth out the ride for our passenger we introduce a passive
filter which acts in response to the washboard pattern of the road. Upon examination of
the frequency spectrum of our displacement and velocity we introduce additional parameters
ga, gv, gd which manifest themselves as modifications to the mass, damping coefficient and
spring constant of our system respectively. The inherent issue with this approach is that
this method relies on physical modifications to the system which are dependent on the right
hand side forcing function. Thus if the character of the road changes, the passive filtering
needs to be manually adjusted which is inconvenient to do frequently.
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Through numerical experiments, we observed that adjusting the spring constant by varying
gd leads to a shift of the natural frequency of the system which shifts the highest energy
peak in the frequency spectrum (see fig. 7).
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Figure 7: Passive Filtering: Varying gd
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Figure 8: Passive Filtering: Varying gv

On the other hand we found that adjusting the damping coefficient by varying gv reduces
the energy of the driving frequency. However as a consequence, this amplifies the effect of
the white noise throughout the spectrum. This can be addressed for example through the
use of a seat cushion.

5.2 The Active Filter

The best option for the active filtering is the use of the Kalman filter to reduce the bad
effects of the bumpiness. The idea behind this methodology is to use the output from the
Kalman filter combined with the passive filtering. Further details on Kalman filtering are in
the Appendix.
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6. Conclusions

We developed two mathematical models to describe the motion of a car on a bumpy road.
Our first model is a benchmark to verify that the active and passive methods we used agree
with expectations. The latter one represents a real world situation where one should not
expect to know the actual dynamics of the system. Through the use of the Kalman filtering
we corrected the inaccuracies of the model by introducing observation data. Using this new
Kalman path we investigated ways to tune system parameters to provide a smooth ride on
a bumpy road.

As future work one should include in this analysis a time delay which represents better an
active control response system.

7. Appendix

Here we give a derivation of the Kalman filtering for discrete time and linear filtration
problem. The derivation here follows lecture notes [2]. Derivation of Kalman filter for more
complex settings can be found in [1].

Model and Data

We assume that the evolution of the system can be described by the following stochastic
difference equation

xk+1 = Mkxk +Gkuk + εk (Model) (7.1)

where xk is a vector which represents the state at time tk, uk is deterministic vector, εk is a
white-noise (Markov-Gaussian) process with zero mean and covariance matrices

E{εkεTl } = Qkδkl

We also assume that we have data which is of the form

zk = Hkxk + νk (Data) (7.2)

where zk is the data measured at time tk and νk is a white-noise process with zero mean and
covariance matrices

E{νkνTl } = Rkδkl

We assume that the initial distribution of x0, {εk} and {νk} are pairwise independent.
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Prediction step

Let us consider the state vector xk+1 conditioned on the data (observation) Zk = {z1, · · · , zk},
we denote it by xk+1|k = xk+1|Zk and denote its minimum mean squared error estimator by
x̂k+1|k = E{xk+1|Zk}, we call it a prediction. By definition,

x̂k+1|k = E{xk+1|Zk}
= E{Mkxk +Gkuk + εk|Zk}
= Mkxk|k +Gkuk

(7.3)

Define Pk+1|k the variance (or mean squared error) of x̂k+1|k,

Pk+1|k = E{(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |Zk} (7.4)

By using equations (7.1) and (7.3) and that fact that x̂k|k and εk are independent, we have

Pk+1|k = E{(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |Zk}

= MkPk|kM
T
k +Qk

(7.5)

Equation (7.3) and (7.5) are called the prediction step.

Analysis step

The idea of Kalman filtration is to use the data obtained from zk+1 to update the prediction
x̂k+1|k to get x̂k|k such that x̂k|k is the minimum mean square error estimator for xk+1|k+1.
We assume that x̂k+1|k+1 is linear combination of x̂k+1|k and zk+1, that is,

x̂k+1|k+1 = K ′k+1x̂k+1|k +Kk+1zk+1

for some matrices K ′k and Kk. For convenience, let us define the estimation error of xk+1|k+1

x̃k+1|k+1 = x̂k+1|k+1 − xk+1|k+1

We assume that x̂k+1|k+1 is unbiased which requires

E{x̂k+1|k+1} = K ′k+1E{x̂k+1|k}+Kk+1Hk+1E{xk+1} (7.6)

Since the prediction is unbiased

E{x̂k+1|k} = E{xk+1}
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we have
E{x̂k+1|k+1} = (K ′k+1 +Kk+1Hk+1)E{xk+1}

We require that K ′k+1 +Kk+1Hk+1 = I such that x̂k+1|k+1 is unbiased, hence

K ′k+1 = I −Kk+1Hk+1

so now the estimate of xk+1 given Zk+1 is updated as

x̂k+1|k+1 = (I −Kk+1Hk+1)x̂k+1|k +Kk+1zk+1

= x̂k+1|k +Kk+1(zk −Hk+1x̂k+1|k)
(7.7)

where we use the facts that vk+1 and x̃k+1|k are independent. we call the matrix Kk the
Kalman gain.

Next we need to update the covariance matrix by using the data zk+1. Recall the definition
of Pk+1|k+1 and Pk+1|k, we have

Pk+1|k+1 = E{x̃k+1|k+1x̃
T
k+1|k+1|Zk+1}

= (I −Kk+1Hk+1)Pk+1|k(I −Kk+1Hk+1)T +Kk+1Rk+1K
T
k+1

(7.8)

Equations (7.7) and (7.8) are called the analysis step.
The last problem one needs to address is the choice of the Kalman gain. We want to

choose a suitable Kalman gain Kk+1 such that it minimizes mean square error, that is, we
want to minimize

E{‖x̃k+1|k+1‖2|Zk+1} = E{x̃Tk+1|k+1x̃k+1|k+1|Zk+1}
= traceE{x̃k+1|k+1x̃

T
k+1|k+1|Zk+1}

= trace(Pk+1|k+1)

(7.9)

Taking the derivative of trace(Pk+1|k+1) with respect to Kk+1|k+1

∂trace(Pk+1|k+1)

∂Kk+1

= −2(I −Kk+1Hk+1)Pk+1|kH
T
k+1 + 2Kk+1Rk+1 = 0 (7.10)

Rearranging the terms of the above equation, we have

Kk+1 = Pk+1|kH
T
k+1(Hk+1Pk+1|kH

T
k+1 +Rk+1)−1.

We call this matrix Kalman gain and use it to update x̂k+1|k to obtain x̂k+1|k+1.
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